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Autumn remains a relatively neglected season in climate
change research in temperate and arctic ecosystems.
This neglect occurs despite the importance of autumn
events, including leaf senescence, fruit ripening, bird and
insect migration, and induction of hibernation and dia-
pause. Changes in autumn phenology alter the repro-
ductive capacity of individuals, exacerbate invasions,
allow pathogen amplification and higher disease-trans-
mission rates, reshuffle natural enemy-prey dynamics,
shift the ecological dynamics among interacting species,
and affect the net productivity of ecosystems. We syn-
thesize some of our existing understanding of autumn
phenology and identify five areas ripe for future climate
change research. We provide recommendations to ad-
dress common pitfalls in autumnal research as well as to
support the conservation and management of vulnera-
ble ecosystems and taxa.

The neglect of autumn

Numerous effects of climate change on the spring phenol-
ogy (see Glossary) of temperate plants and animals are
well documented [1,2]. Warmer temperatures have
resulted in earlier leaf-out and flowering of plants, earlier
arrivals of migratory songbirds, and earlier emergence and
spring migration of insects [3,4]. Autumn, by contrast, has
received less attention: in the publication database Scopus
there are only about one-half to one-third as many climate
change studies set in autumn as compared to spring
(Table 1). The neglect of autumn in phenology and climate
change research is likely caused by a combination of fac-
tors, including the complexity of drivers of autumn phe-
nology, the protracted nature of autumn events, and
human enchantment with the sudden burst of spring
flowers and wildlife following winter.

Despite this relative neglect, autumn events are also
hugely important ecologically and evolutionarily. They
signal the end of the growing and breeding season for most
temperate and arctic plant and animal species, and are an
understudied component of the ecological impacts of
climate change. In the following review we synthesize some
of our existing understanding of autumn phenology,
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identify five areas ripe for future research, and provide
recommendations for research in those areas.

What we know about autumn

Intemperate ecosystems, the autumn phenomena that have
received the most attention in climate change research are
leaf senescence and migratory bird departures. Insect
diapause and fruit ripening have also garnered moderate
interest. Other autumn phenomena such as amphibian
dormancy and bud formation remain less studied and poorly
understood.

Despite the relative neglect of autumn, ecologists have
made important progress in understanding the drivers of
autumn phenology and the effects of climate change on
autumn events (Figure 1). Long-term observational data-
sets indicate that leaf senescence is, on average, delayed by
increasing temperatures [4,5]. In addition, community-
and landscape-level studies show that invasive non-native
plants can gain an advantage over native species by
extending their growing seasons in autumn [6], and that
an extended growing season allows many perennials to
sequester more carbon — which in turn alters local climate
and ecosystems [7]. Long-term data indicate that birds are
shifting their autumn phenology in response to climate
change, with short-distance migrants generally delaying
migration and some long-distance migrants leaving earlier
[8-10]. Insects that have been examined have responded to

Glossary

Autumn migration: the annual long-distance movement of individuals from
their breeding ground to their wintering ground. In the northern hemisphere,
autumn migrants typically fly north to south. Many temperate- and arctic-
breeding birds migrate in autumn, as do insects such as monarch butterflies
and some dragonflies.

Diapause: a physiological state of dormancy. In arctic and temperate
ecosystems, diapause is a hormonally driven hiatus in developmental or
reproductive processes. Diapause can occur in any life-stage, and is an
important overwintering strategy for insects and other animals.

Leaf senescence: leaf aging, resulting in a decline in function, that in temperate
regions is associated with seasonal leaf-color change and leaf drop. Plants
reabsorb essential nutrients from their leaves before autumn leaf senescence.
Net ecosystem productivity (NEP): for an ecosystem, the balance between
carbon sequestered through photosynthesis and the carbon lost through
respiration. Warming autumn temperatures can delay leaf senescence and
extend photosynthesis and the growing season, but can also disproportio-
nately increase ecosystem respiration.

Phenology: the timing of seasonal biological events. Spring events including
flowering, leaf-out, and insect emergence have been shown to advance in
response to warming temperatures. Autumn events such as leaf senescence
and autumn migration are less well studied, but are often delayed by a
warming climate.
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Table 1. Autumn has received less attention than spring in the

climate change literature®
‘Climate Change’ mm Autumn (%)

Climate Change (CC) 3248 8751 271
‘Leaf*’ and ‘CC’ 212 549 27.9
‘Bird*’ and ‘CC’ 100 413 19.5
‘Insect*’ and ‘CC’ 73 188 28.0
‘Fruit*’ and ‘CC’ 63 —

15.4
‘Flower*’ and ‘CC’ - 346
‘Mammal*’ and ‘CC’ 39 108 26.5
‘Amphibian*’ and ‘CC’ 7 32 17.9

?Results from a Scopus search conducted on December 11, 2014. The first search
included ‘climate change’ (CC) and either ‘autumn’ or ‘spring’ (the terms ‘fall’,
‘autumnal’, and ‘autumn*’ yielded many false hits, whereas the terms ‘spring’ and
‘autumn’yielded a large fraction of relevant titles and abstracts). Each subsequent
search included ‘climate change’, as well as either ‘autumn’ or ‘spring’ and a
taxon/plant organ search term, as listed in the left-hand column of the table (the
asterisk represents the truncation/wildcard term). Results include the number of
publications returned for all years. Autumn (%) indicates the percentage of the
total citations for each taxon that include autumn in title, keywords, or abstract.
The percentage for fruit is based on the combined fruit and flower total.

warmer autumn temperatures with faster developmental
rates, added generations, and delayed migration and
diapause [11,12]. Fruit ripening of native plants, by con-
trast, is the only autumn event of which we are aware to
have advanced, on average, in response to warming tem-
peratures [4,13]. As we will describe, changes in autumn
phenology can also increase the reproductive capacity of
individuals, exacerbate invasions, alter the ecological dy-
namics among interacting species, and affect the net pro-
ductivity of ecosystems.
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Drivers of autumn phenology
While various measurements of spring temperature can
explain most of the variation in leafing-out times [14], au-
tumn senescence is more weakly linked to autumn tempera-
tures [15] (Figure 2), as well as to the combination of
temperature and photoperiod [7,16]. Other less-predictable
factors can explain additional variation; for example, drought
can advance leaf coloring and leaf drop while abundant soil
moisture can delay senescence [17]. Early frost events and
high winds can also result in sudden leaf senescence and
abscission [18,19]. Air pollution in the form of tropospheric
ozone can induce early senescence, while local CO5 con-
centration has been reported to have no effect [18,20].
Insect diapause and migration phenology also vary
substantially among species and are often modeled as a
combination of photoperiod and temperature [21]. Al-
though most temperate insect species appear to rely in
part on photoperiod controls to induce diapause, some
species such as the parasitoid wasp Leptopilina japonica
and the European corn borer (Ostrinia nubilalis) enter
diapause in response to minimum temperatures or daily
temperature cycles alone [22,23]. For autumn-migrating
insects, migration timing is also usually driven by day
length and temperature, but it can also be affected by
rainfall, humidity, host plant senescence, and wind [12,24].
The timing of autumn bird migration is driven by many
factors, and species-specific interactions among factors,
including environmental conditions (e.g., temperature
and photoperiod), life-history traits (e.g., broodedness
and wintering location), spring arrival times, migration

Advancing Delaying Refs
Single-brooded species Multiple-brooded species
Long-distance migrants Short-distance migrants [8-10]
Bird =
departures
Multivoltine species
Univoltine species Temperature-driven diapause [12,43,66]
Insect
diapause b B
Afew late flowering species
Fruit Most species Increasing presence of invasives [13,30,67]
ripening - o
In drought conditions Most species, wet years
Leaf < > [4,7,68]
senescence
Aug Sept Oct Nov Dec
TRENDS in Ecology & Evolution

Figure 1. Expected phenological shifts of autumn events in response to climate change. We indicate how leaf senescence, bird departures, fruit ripening, and insect diapause
are expected to respond to climate change in temperate ecosystems of eastern North America. Gray broken lines indicate the direction in which an event will shift; darker
stippling indicates a response that is common, while lighter stippling indicates a response that is comparatively rare. Some of these changes are happening already. The data for
leaf senescence and bird migration are most complete, while there is far less information on fruit maturation times and insect diapause. [4,7-10,12,13,30,43,66-68]
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Figure 2. Temperature explains more variation in spring than in autumn leaf phenology. Correlation coefficients (R?) between event date and the preceding mean monthly
spring and autumn temperatures for four tree species in Germany (1951-2000). Data from [15].

speed, and endogenous circannual rhythms. The propor-
tional influence of these drivers varies widely among
species, migratory cohorts, and geographies [8-10,25,26],
and requires further, widespread investigation using
multivariate analyses.

Methods for studying autumn phenology

Compared to those that take place in the spring, observa-
tional studies of autumn phenology are faced with greater
methodological challenges, such as defining events, stan-
dardizing methodologies, and treating autumn phenomena
as multiple-day events. It is apparent that many autumn
studies, for example those of leaf senescence and fruit
maturation, are based on somewhat subjective observa-
tions such as ‘60% leaf fall’ or descriptions of fruit colors
[4,27]. In addition, most researchers do not adequately
describe their methods, making it difficult to compare
records across studies.

One challenge for defining autumn events is that
although spring events such as leaf-out and insect emer-
gence are sudden and visually apparent, autumn events
such as leaf senescence, fruit ripening, and bird and
butterfly migration are protracted and asynchronous.
Definitions of leaf-out in spring are similar, and occur
within days of one another; by contrast, definitions for
the date of senescence range from the date of first leaves
changing color to the date of 100% abscission — events
that can occur weeks apart [28,29]. Autumn bird migra-
tion is also temporally extended, and can involve multi-
ple waves of migrating birds [3]. Fruits typically mature
over an extended period as well, as part of their repro-
ductive and dispersal strategy, which contrasts with the
sudden and brief flowering-window for many species
[30]. Thus, it is not possible to assign single dates to
many autumn phenomena. It is also more difficult to
observe the last date of activity for a species in the
autumn than the date of its first appearance in spring
because absence can be more challenging to observe than
presence, and, in the case of birds, autumn behavior is
less conspicuous [3].

It is clear from the recent autumn literature that
researchers will have to deviate from spring methodology
to appropriately capture autumn events. Autumn defini-
tions must be biologically relevant and comparable across
studies, and this could require treating autumn phenome-
na as multiple-day events [31].

The influence of autumn on carbon storage

Autumn phenology plays an important role in the annual
carbon balance of temperate ecosystems. Later senescence
dates contribute to longer growing seasons in temperate
and arctic regions [32]. Wu et al. [33] found that changes in
autumn leaf phenology in temperate forests better explain
variation in annual net ecosystem productivity (NEP) —in
other words, the balance between photosynthesis and
respiration —than do changes in spring phenology. Delayed
autumn leaf senescence is associated with increased NEP,
meaning that ecosystems tend to sequester more carbon in
warmer years with later autumn phenology [7,34,35]. How-
ever, this result is not universal; autumn warming also
elevates ecosystem respiration, occasionally outweighing
increased autumn production, which can turn current
carbon sinks into future COy sources [36].

The variety of factors affecting autumn NEP complicates
attempts to forecast the implications of longer growing
seasons on NEP. At the Harvard Forest in Massachusetts,
spring ecosystem respiration is dominated by respiring
foliage, but autumn respiration is dominated by below-
ground root and microbial respiration [37]. Furthermore,
although they are often lumped together as ‘soil respiration’,
root and microbial respiration differ in their responses to
environmental change [38]. The phenology of roots and
microbial activity is poorly understood, and observations
suggest substantial variability in root phenology of temper-
ate tree species [39]. In addition, root phenology cannot be
determined from above-ground plant phenology [40]. The
lack of data regarding the partitioning of above-ground, root,
and soil microbial phenological responses to climate change
remains a large limitation in our understanding of, and
ability to forecast, how autumn climate change will
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influence carbon sequestration. Given the magnitude and
importance of above- and below-ground arctic and temper-
ate carbon resources, the need for more ecosystem-level
studies and models addressing autumnal phenomena
remains great.

Invasive species, pests, and pathogens in autumn
Phenotypic plasticity and rapid evolution allow some inva-
sive species to be more responsive to warmer autumn
temperatures and later freezing events than are many
native species [41]. Fridley [6] found that many non-native
invasive shrub species in the eastern USA gained an
advantage of greater autumn carbon assimilation over
native shrub species through delayed leaf senescence in
autumn, rather than via earlier leaf-out in the spring
(Figure 3). Thus, the lengthening growing season likely
contributes to the advantage some invasive species, such
as Morrow’s honeysuckle (Lonicera morrowii) and Glossy
buckthorn (Rhamnus frangula), have over many native
shrubs, and might be considered as a bet-hedging strategy
to maintain viable leaves despite the increasing risk of
frost damage.

Warmer autumn temperatures also present an advan-
tage for some insect pests. By speeding development and
delaying diapause, many insects produce more generations
in warmer, longer growing seasons [42]. The diapause of
Spruce beetles (Dendroctonus rufipennis) and Douglas fir
beetles (Dendroctonus pseudotsugae), for instance, can be
either disrupted or delayed with warmer autumn tempera-
tures, extending both reproductive capacity and feeding
activity [43]. Already, warmer autumn and winter weather
has allowed bark beetle populations to increase and has
magnified damage to trees in the western USA and Canada.

There are consequences for human health as well.
Warmer autumns have led to extended autumn activity
of ticks and mosquitoes [44,45]. Ticks (e.g., Ixodes species)
continue to search for blood meals in autumn as long as
temperatures remain above their activity thresholds, and
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have the potential to infect people with Lyme disease
[46]. Delayed onset of winter allows amplification of both
mosquito populations and their viruses [47]: human infec-
tions of West Nile virus are much more prevalent in the
fall, and some mosquito vectors are known to take a larger
fraction of their blood meals from mammals in the fall
following the departure of migratory birds [48]. Similarly,
wildlife such as caribou (Rangifer tarandus) are expected
to experience a longer infective season by the nematode
Ostertagia gruehneri with warmer temperatures in the
spring and autumn, thus increasing their likelihood of
infection [49] (Figure 4).

Much published literature focuses on invasive species,
pests, and pathogens that stand to benefit from climate
change. Certainly, there will also be disadvantaged inva-
sive species, pests, and pathogens. For instance, while
some insect pests experience faster development times
and increased generations, others respond to increased
temperatures (those beyond their optimum range) with
slower development times, lowered reproductive capacity,
and increased mortality [50]. Many sap-feeding insects
respond to water-stressed host plants and decreased hu-
midity with shorter lifespans, lowered fecundity, and ele-
vated dispersal rates [51,52]. We also expect within-species
regional variation in the effects of climate change on
autumn insect abundance based on temperature thresh-
olds and range shifts. For instance, although native ash
trees (Fraxinus sp.) in the northern USA are expected to
experience heightened herbivory from the introduced em-
erald ash borer (Agrilus planipennis), trees that occur at
lower latitudes are predicted to experience decreased her-
bivory from the beetle [53].

Interspecies interactions

Species rely on synchrony for interspecific interactions in
autumn, exactly as they do in spring and other seasons.
Some insects lay their eggs on particular fruits, birds
consume particular types of fruit during migration, and
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Figure 3. Non-native invasive plants gain an advantage over native species with extended autumnal growth. Mean proportions (with standard errors) of seasonal carbon (C)
assimilation (of total carbon assimilation) by native (green) and non-native (red) species (many of which are invasive) in autumn (after approximately 24 October). Many
non-native species are better able to assimilate carbon in the autumn, and extend their growing season in comparison with native species. Colored asterisks on the bottom
right reflect autumn carbon gain of less than 0.5%. The inset depicts comparisons between native and non-native members of different phylogenetic groups, with asterisks
denoting the significance of comparisons (*, P<0.05; ***, P<0.001). Reproduced from [6].
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Figure 4. A warming climate will extend the infective period of the nematode
(Ostertagia gruehneri), which causes disease in the caribou (Rangifer tarandus). In
four seasonal climate scenarios, with black, blue, green, and red representing
successively warmer climates, the temperature-dependent reproductive success of
the nematode (indicated by the index R,/C) is predicted by a model to start earlier
in the year and extend later in the year as conditions warm. Nematode
reproductive success, and its resulting ability to infect hosts, declines in summer
as a result of the decreased ability of the nematode to survive hot weather.
Reproduced from [49].

many specialist insect folivores feed into autumn
[12,30,54]. Asynchrony can result when interacting species
experience different magnitudes or directions of phenologi-
cal shift in response to climate change. In spring, climate
change has resulted in asynchrony between herbivores and
leaves, flowers, and pollinators, and between migratory
birds and their insect prey, in some cases leading to
decreases in survival and reproductive success [55—
57]. The variability of temporal shifts in autumn also creates
possibilities for asynchrony, but these remain little studied.

Songbirds primarily consume fruits during autumn
migration, and many plants rely on birds to disperse their
seeds [30]. However, climate change is advancing fruit-
ripening dates and delaying songbird departures for many
species [4,10]. This mismatch will change songbird diets,
particularly for those short-distance migrants that depart
late in the season. Invasive non-native plants often pro-
duce abundant fruits of low nutritional quality that last
later into the autumn season [30,58]. Because many song-
birds delay departures as a consequence of a warming
climate, they will likely feed more on the fruits of invasive
species, increasing invasive seed dispersal.

The possibility of mismatches involving insects is both
intriguing and largely unknown. Because invertebrates
often have short generation times and large brood sizes,
most have great capacity for tracking climate changes.
Monophagous insects that feed on developing seeds and
fruit might experience changing food resources if climate
change affects their developmental timing. Additional
broods will extend the presence of some species, exposing
them to new complexes of predators, parasitoids, and patho-
gens. The tachinid fly Compsilura concinnata, introduced
into North America from Europe to control gypsy moth [59],
is now successfully producing an additional fall generation
in New England (Jeff Boettner, personal communication),
which parasitizes late-season notodontid moth caterpillars
and other non-target species. Almost all the studies
documenting asynchrony between parasitoid insects and
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their hosts have been conducted in the spring when emer-
gence asynchrony can be dramatic. The more subtle appear-
ance of autumn phenomena does not mean that they have
smaller effects on population dynamics — rather it means
that much further study in this area is warranted.

Even within a taxon the consequences of climate change
are complex and are likely to have both positive and
negative effects. Taking the Monarch butterfly as an
example, several studies have warned that climate change
threatens the overwintering roosts in Mexico [60], and
there is mounting evidence that droughts in the south-
central and southwestern USA have contributed to the
butterfly’s recent demographic collapse across eastern
North America [61]. However, warmer average tempera-
tures and prolonged autumnal conditions are favorable to
larval development, and will shift the milkweed range to
make more plants available to Monarchs in Canada and
the northern USA [62].

The future of autumn research

Based on what is already known about autumn events, and
the conspicuous gaps in our overall understanding on the
topic, we make five core recommendations for future
research into the effects of climate change on autumn
phenology.

(i) Researchers should use factorial experiments and
large-scale, multispecies observational studies to deter-
mine the mechanisms affecting autumn events, as well as
the underlying phylogenetic signals. Information on the
factors controlling autumn events currently comes almost
entirely from small-scale observational studies. Experi-
ments that test the effects and interactions of factors —
such as temperature, soil moisture, frost events, host-
plant quality, and photoperiod — will make it possible to
isolate and quantify the drivers of leaf senescence, fruit
ripening, and insect diapause. Similarly, large-scale, mul-
tispecies studies will help to quantify the role of shared
evolutionary history of closely related species in influenc-
ing fall phenology. The findings that experimental warm-
ing studies underpredict the influence of temperature on
spring phenology, and that phenology is often phylogenet-
ically conserved, reinforce the importance of isolating
drivers experimentally, accounting for phylogeny, and of
comparing experimental findings to long-term observa-
tional studies [1,63—65].

(i) Autumn events should be methodologically and
statistically treated as multiple-day events rather than
single dates, and definitions should be standardized where
possible. We encourage researchers to treat autumn events
as multiple-day events, recording the beginning, duration,
and end of autumn phenomena, and analyzing changes in
each of these three response variables [31]. This approach
avoids the challenge of developing robust single-day defini-
tions for each autumn event, and more accurately reflects
ecological reality. Where possible, researchers should aim to
record metrics — such as chlorophyll content or coloration —
on a continuous scale, making it possible to then determine
rates of senescence, points of inflection in the season, or the
timing of markers such as 50% change [7].

Future research should prioritize the development and
standardization of common empirical techniques and
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definitions, such as those developed by the USA National
Phenology Network [31], for the sake of spatial and tem-
poral comparisons. Leaf senescence observations could be
standardized through the use of handheld chlorophyll
meters and leaf litter measurements, and fruit-ripening
dates could be standardized with reference color samples
and sugar content measured with a refractometer. Emerg-
ing technologies should be applied to standardizing
autumn phenology measurements: smartphone apps for
citizen scientists can enhance the spatial resolution of
phenological observations, while geolocator tags and
GPS tracking devices can be used to monitor the depar-
tures of inconspicuous migratory birds with improved
accuracy and detail.

(iii)) Further research should examine the separate
effects of climate change on the phenologies of above-
ground, root, and microbial respiration, and assess the
effects of changes in autumn phenology on the cycling of
carbon and other key nutrients. Models that account for
the differential changes in above-ground, root, and micro-
bial respiration are necessary for reasonable forecasts of
the effects of climate change on NEP and the cycling of
carbon and nutrients. These components will be most
easily differentiated by experiments examining the effects
of warmer, drier autumns on the magnitude and phenology
of root and microbe respiration below ground, as well as
above-ground respiration of leaves and wood. The domi-
nance of autumn below-ground respiration in carbon losses
makes separating root and microbial respiration, and
measuring widely across the temperate landscape, impor-
tant next steps for reducing error in carbon cycling models.
The Keenan et al. [35] method of combining satellite data,
biosphere models, and ecosystem-level carbon flux mea-
surements with long-term field observations is an excellent
example of synthesizing approaches to investigate the
effects of climate change on NEP. Expanding such meth-
odologies will allow better worldwide projections of carbon
balance and feedbacks to climate change in autumn.

(iv) Researchers should investigate the role of autumn
climate change on the success of pests, pathogens, and
invasive species, and the importance of these findings for
recommended management practices. Given the dispro-
portionate influence of pests, pathogens, and invasive
species on ecosystems and society, forecasts of the effects
of climate change and phenological changes must take
these factors into account [49]. Moreover, given the success
of particular invasive plant species and pests in the au-
tumn, conservation agencies might need to adjust how they
identify which species are of the highest priority to man-
age. For effective management of these groups and their
ecological communities, researchers should identify the
features (e.g., origin site, feeding strategy, minimum tem-
perature optimum) common to invasive species, pests, and
pathogens that benefit from autumn climate change, as
well as how changes to these groups impact upon species in
the surrounding community.

(v) Finally, autumn phenology changes have the poten-
tial to result in ecological mismatches and dietary changes
among interacting species; priority should be given to
studying species, such as specialists and migrants, that
are particularly vulnerable to environmental change. With
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many long-distance migrant bird and insect species al-
ready in decline due to loss of breeding, wintering, and
stopover habitat, as well as other threats, mismatches for
long-distance migrants should receive special attention.
These mismatches are not limited to the complete loss of
interactions — instead they can alter the quality of inter-
actions, such as effects on the abundance or nutritional
quality of food, or on the strength of competitive or mutu-
alistic interactions [55,56]. Adaptive plasticity will serve to
mitigate some phenological mismatch through individual
adjustments. However, mismatches will likely still take
effect at the community scale. Future studies should aim to
explore these relatively subtle effects of phenological
changes on the quality of food and other factors, particu-
larly for specialized and otherwise vulnerable groups, such
as long-distance bird and insect migrants, organisms with
complex cycles, and species with small effective population
sizes. Thus, research in these areas will inform manage-
ment recommendations that can help to protect key inter-
actions for rare and otherwise imperiled species.

While we have focused here on five important research
areas, there are other gaps in our knowledge of how climate
change impacts on autumnal phenomena. Remarkably few
studies have followed the carry-over impacts of autumnal
conditions on the following spring or followed individuals
across multiple years. Another exciting topic in much need
of study is the extent to which autumn responses to climate
change are genetic versus plastic. Do autumnal responses
have more plasticity built into them than their vernal
counterparts? We have the sense that organisms do more
bet-hedging in the fall, perhaps because the fitness con-
sequences for encountering frost are lower in autumn than
in the spring — and, if so, what are the underlying mecha-
nisms that allow such plasticity in response?

Conclusions

Research has identified many of the primary environmen-
tal drivers of autumn phenology. However, much uncer-
tainty remains about the relative contributions of different
drivers, how they interact with species’ life-histories, and
how temporal shifts will manifest at the community and
ecosystem level. What we have outlined here are promising
avenues for future research in autumn phenology, and
possible implications for conservation management. This
field remains wide open for discovery, particularly by way
of experiments, mechanistic modeling, and observations of
species interactions. We urge ecologists to study the effects
of climate change and phenological changes in the autumn
window — as very many studies have already accomplished
for the spring.
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